598 research outputs found

    Singular dynamics and pseudogap formation in the underscreened Kondo impurity and Kondo lattice models

    Full text link
    We study a generalization of the Kondo model in which the impurity spin is represented by Abrikosov fermions in a rotation group SU(P) larger than the SU(N) group associated to the spin of the conduction electrons, thereby forcing the single electronic bath to underscreen the localized moment. We demonstrate how to formulate a controlled large N limit preserving the property of underscreening, and which can be seen as a ``dual'' theory of the multichannel large N equations usually associated to overscreening. Due to the anomalous scattering on the uncompensated degrees of freedom, the Fermi liquid description of the electronic fluid is invalidated, with the logarithmic singularities known to occur in the S=1 SU(2) Kondo impurity model being replaced by continuous power laws at N=\infty. The present technique can be extended to tackle the related underscreened Kondo lattice model in the large N limit. We discover the occurence of an insulating pseudogap regime in place of the expected renormalized metallic phase of the fully screened case, preventing the establishement of coherence over the lattice. This work and the recent observation of a similar weakly insulating behavior on transport in CeCuAs_2 should give momentum for further studies of underscreened impurity models on the lattice.Comment: 9 pages, 3 figures. Several modifications in published version, including new title, further details on the interpretation of the formalism and possible experimental connection

    Spin-orbital Kondo decoherence by environmental effects in capacitively coupled quantum dot devices

    Full text link
    Strong correlation effects in a capacitively coupled double quantum-dot setup were previously shown to provide the possibility of both entangling spin-charge degrees of freedom and realizing efficient spin-filtering operations by static gate-voltage manipulations. Motivated by the use of such a device for quantum computing, we study the influence of electromagnetic noise on a general spin-orbital Kondo model, and investigate the conditions for observing coherent, unitary transport, crucial to warrant efficient spin manipulations. We find a rich phase diagram, where low-energy properties sensitively depend on the impedance of the external environment and geometric parameters of the system. Relevant energy scales related to the Kondo temperature are also computed in a renormalization-group treatment, allowing to assess the robustness of the device against environmental effects.Comment: 13 pages, 13 figures. Minor modifications in V

    Impact of disorder on unconventional superconductors with competing ground states

    Full text link
    Non-magnetic impurities are known as strong pair breakers in superconductors with pure d-wave pairing symmetry. Here we discuss d-wave states under the combined influence of impurities and competing instabilities, such as pairing in a secondary channel as well as lattice symmetry breaking. Using the self-consistent T-matrix formalism, we show that disorder can strongly modify the competition between different pairing states. For a d-wave superconductor in the presence of a subdominant local attraction, Anderson's theorem implies that disorder always generates an s-wave component in the gap at sufficiently low temperature, even if a pure d_{x^2-y^2} order parameter characterizes the clean system. In contrast, disorder is always detrimental to an additional d_{xy} component. This qualitative difference suggests that disorder can be used to discriminate among different mixed-gap structures in high-temperature superconductors. We also investigate superconducting phases with lattice symmetry breaking in the form of bond order, and show that the addition of impurities quickly leads to the restoration of translation invariance. Our results highlight the importance of controlling disorder for the observation of competing order parameters in cuprates.Comment: 13 pages, 10 figure

    Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions

    Full text link
    We review here some universal aspects of the physics of two-electron molecular transistors in the absence of strong spin-orbit effects. Several recent quantum dots experiments have shown that an electrostatic backgate could be used to control the energy dispersion of magnetic levels. We discuss how the generically asymmetric coupling of the metallic contacts to two different molecular orbitals can indeed lead to a gate-tunable Hund's rule in the presence of singlet and triplet states in the quantum dot. For gate voltages such that the singlet constitutes the (non-magnetic) ground state, one generally observes a suppression of low voltage transport, which can yet be restored in the form of enhanced cotunneling features at finite bias. More interestingly, when the gate voltage is controlled to obtain the triplet configuration, spin S=1 Kondo anomalies appear at zero-bias, with non-Fermi liquid features related to the underscreening of a spin larger than 1/2. Finally, the small bare singlet-triplet splitting in our device allows to fine-tune with the gate between these two magnetic configurations, leading to an unscreening quantum phase transition. This transition occurs between the non-magnetic singlet phase, where a two-stage Kondo effect occurs, and the triplet phase, where the partially compensated (underscreened) moment is akin to a magnetically "ordered" state. These observations are put theoretically into a consistent global picture by using new Numerical Renormalization Group simulations, taylored to capture sharp finie-voltage cotunneling features within the Coulomb diamonds, together with complementary out-of-equilibrium diagrammatic calculations on the two-orbital Anderson model. This work should shed further light on the complicated puzzle still raised by multi-orbital extensions of the classic Kondo problem.Comment: Review article. 16 pages, 17 figures. Minor corrections and extra references added in V

    Interplay of electromagnetic noise and Kondo effect in quantum dots

    Full text link
    We investigate the influence of an electromagnetic environment, characterized by a finite impedance Z(ω)Z(\omega), on the Kondo effect in quantum dots. The circuit voltage fluctuations couple to charge fluctuations in the dot and influence the spin exchange processes transferring charge between the electrodes. We discuss how the low-energy properties of a Kondo quantum dot subject to dynamical Coulomb blockade resemble those of Kondo impurities in Luttinger liquids. Using previous knowledge based on the bosonization of quantum impurity models, we show that low-voltage conductance anomalies appear at zero temperature. The conductance can vanish at low temperatures even in presence of a screened impurity spin. Moreover, the quantitative determination of the corresponding Kondo temperature depends on the full frequency-dependent impedance of the circuit. This is demonstrated by a weak-coupling calculation in the Kondo interaction, taking into account the full distribution P(E)P(E) of excited environmental modes.Comment: 10 pages, 4 figures, revised version, new titl

    Classical percolation fingerprints in the high-temperature regime of the integer quantum Hall effect

    Full text link
    We have performed magnetotransport experiments in the high-temperature regime (up to 50 K) of the integer quantum Hall effect for two-dimensional electron gases in semiconducting heterostructures. While the magnetic field dependence of the classical Hall law presents no anomaly at high temperatures, we find a breakdown of the Drude-Lorentz law for the longitudinal conductance beyond a crossover magnetic field B_c ~ 1 T, which turns out to be correlated with the onset of the integer quantum Hall effect at low temperatures. We show that the high magnetic field regime at B > B_c can be understood in terms of classical percolative transport in a smooth disordered potential. From the temperature dependence of the peak longitudinal conductance, we extract scaling exponents which are in good agreement with the theoretically expected values. We also prove that inelastic scattering on phonons is responsible for dissipation in a wide temperature range going from 1 to 50 K at high magnetic fields.Comment: 14 pages + 8 Figure

    Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes

    Get PDF
    Spinocerebellar ataxia (SCA) is a physically devastating, genetically inherited disorder characterized by abnormal brain function that results in the progressive loss of the ability to coordinate movements. There are many types of SCAs as there are various gene mutations that can cause this disease. SCA types 1–3, 6–10, 12, and 17 result from a trinucleotide repeat expansion in the DNA-coding sequence. Intriguingly, recent work has demonstrated that increased trinucleotde expansions in the SCA7 gene result in defect in the function of the SAGA histone acetyltransferase complex. The SCA7 gene encodes a subunit of the SAGA complex. This subunit is conserved in yeast as the SGF73 gene. We demonstrate that Sgf73 is required to recruit the histone deubiquitination module into both SAGA and the related SliK(SALSA) complex, and to maintain levels of histone ubiquitination, which is necessary for regulation of transcription at a number of genes

    Self-consistent description of Andreev bound states in Josephson quantum dot devices

    Full text link
    We develop a general perturbative framework based on a superconducting atomic limit for the description of Andreev bound states (ABS) in interacting quantum dots connected to superconducting leads. A local effective Hamiltonian for dressed ABS, including both the atomic (or molecular) levels and the induced proximity effect on the dot is argued to be a natural starting point. A self-consistent expansion in single-particle tunneling events is shown to provide accurate results even in regimes where the superconducting gap is smaller than the atomic energies, as demonstrated by a comparison to recent Numerical Renormalization Group calculations. This simple formulation may have bearings for interpreting Andreev spectroscopic experiments in superconducting devices, such as STM measurements on carbon nanotubes, or radiative emission in optical quantum dots.Comment: 12 pages, 11 figures. Last version: we added several extra references, modified two figures, and discussed recent proposals for Andreev spectroscop

    Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes

    Get PDF
    A combinatorial depletion strategy is combined with biochemistry, quantitative proteomics and computational approaches to elucidate the structure of the SAGA/ADA complexes. The analysis reveals five connected functional modules capable of independent assembly

    Quantum impurity solvers using a slave rotor representation

    Full text link
    We introduce a representation of electron operators as a product of a spin-carry ing fermion and of a phase variable dual to the total charge (slave quantum rotor). Based on this representation, a new method is proposed for solving multi-orbital Anderson quantum impurity models at finite interaction strength U. It consists in a set of coupled integral equations for the auxiliary field Green's functions, which can be derived from a controlled saddle-point in the limit of a large number of field components. In contrast to some finite-U extensions of the non-crossing approximation, the new method provides a smooth interpolation between the atomic limit and the weak-coupling limit, and does not display violation of causality at low-frequency. We demonstrate that this impurity solver can be applied in the context of Dynamical Mean-Field Theory, at or close to half-filling. Good agreement with established results on the Mott transition is found, and large values of the orbital degeneracy can be investigated at low computational cost.Comment: 18 pages, 15 figure
    corecore